SHARE:

Exploring the assumption that commercial online nonprobability survey respondents are answering in good faith

General Information

Title
Exploring the assumption that commercial online nonprobability survey respondents are answering in good faith
Author
Courtney Kennedy, Andrew Mercer and Arnold Lau
Publication Type
Journal paper
Outlet
Survey Methodology
Year
2024
Abstract
Statistical approaches developed for nonprobability samples generally focus on nonrandom selection as the primary reason survey respondents might differ systematically from the target population. Well-established theory states that in these instances, by conditioning on the necessary auxiliary variables, selection can be rendered ignorable and survey estimates will be free of bias. But this logic rests on the assumption that measurement error is nonexistent or small. In this study we test this assumption in two ways. First, we use a large benchmarking study to identify subgroups for which errors in commercial, online nonprobability samples are especially large in ways that are unlikely due to selection effects. Then we present a follow-up study examining one cause of the large errors: bogus responding (i.e., survey answers that are fraudulent, mischievous or otherwise insincere). We find that bogus responding, particularly among respondents identifying as young or Hispanic, is a significant and widespread problem in commercial, online nonprobability samples, at least in the United States. This research highlights the need for statisticians working with commercial nonprobability samples to address bogus responding and issues of representativeness – not just the latter.