Contents
Introduction .. 3
1. Sampling.. 4
 1.1. Respondents with a weight of zero .. 5
2. Weighting.. 6
 2.1. Step 1: Base Weights .. 6
 2.2. Step 2: Poststratification Weights .. 7
 2.3. Categorization and Imputation of Variables ... 8
 2.4. Raking/Trimming Algorithm .. 10
 2.5. Final Poststratification Weights .. 11
Default Weights ... 12
Custom Weights ... 13
Weighting Output ... 13
INTRODUCTION

This document provides a brief description of the weighting procedure used to create sample weights for data sets collected by the Center for Economic and Social Research’s Understanding America Study internet panel.¹ A more comprehensive and detailed discussion is available here.

This version (October 2019) supersedes previous versions published on the UAS website. The current UAS weighting procedure features a two-step process where we first compute base weights, which correct for unequal probabilities of sampling UAS members, and then generate final, post-stratification weights, which align the sample of each study to the reference population along certain socio-economic dimensions.

Sample weights provided before August 2017 were based on a different weighting procedure, which is described here.

¹ Mick Couper and Jon Krosnick have provided insightful and valuable comments throughout the development of the UAS weighting procedure described in this document.
1. SAMPLING

In this section, we provide a summary of UAS sampling procedure as background for our weighting protocol. A full description of the UAS sampling and recruitment procedures is available here.

The UAS is a nationally representative panel of U.S. households recruited through Address Based Sampling (ABS). Eligible individuals are all adults in the contacted household aged 18 and older.

Sampling in the UAS is carried out in batches. There are currently 19 batches, targeting either the U.S. population at large, or specific subsets of it, such as the population of Native Americans, California residents, and Los Angeles County residents. Table 1 below lists all the UAS recruitment batches as of October 2019 and their corresponding reference populations.

Most batches use a two-stage sample design, in which zip codes are drawn first, and then households are randomly drawn from the sampled zip codes. The exceptions are batches 1 and 4, which are simple random samples from lists (all individuals in the ASDE Survey Sampler database for batch 1; all addresses listed on birth certificates issued in Los Angeles County in the years 2009-2012 in a limited set of zip codes for batch 4).

<table>
<thead>
<tr>
<th>Batch</th>
<th>Reference Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U.S.</td>
</tr>
<tr>
<td>2, 3</td>
<td>Native American</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles County young mothers</td>
</tr>
<tr>
<td>5-12</td>
<td>U.S.</td>
</tr>
<tr>
<td>13, 14, 18, 19</td>
<td>Los Angeles County</td>
</tr>
<tr>
<td>15, 16</td>
<td>California</td>
</tr>
<tr>
<td>17</td>
<td>U.S.</td>
</tr>
</tbody>
</table>
Batches using a two-stage sample design are selected based on an adaptive sampling algorithm, which allows to refresh the panel in such a way that its demographic composition moves closer to the population composition.

Specifically, before sampling an additional batch, the algorithm computes the unweighted distributions of specific demographic characteristics (e.g., sex, age, marital status and education) in the UAS at that point in time. It then assigns to each zip code a non-zero probability of being drawn, which is an increasing function of the degree of “desirability” of the zip code. The degree of desirability is a measure of how much, given its population characteristics, a zip code is expected to move the current distributions of demographics in the UAS towards those of the U.S. population. For example, if at a particular point in time the UAS panel underrepresents females with high school degree, zip codes with a relatively high proportion of females with high school degree receive a higher probability of being sampled.

The sampling algorithm is implemented iteratively. That is, after selecting a zip code, the distributions of demographics in the UAS are updated according to the expected contribution of this zip code towards the panel’s representativeness, updated measures of desirability are computed and new sampling probabilities for all other zip codes are defined. Such procedure provides a list of zip codes to be sampled. The implementation of this algorithm implies that the marginal probability of drawing each zip code depends on the composition of the UAS panel at a particular point in time, but also on the unknown response probabilities of selected households in that zip code. Hence, the marginal probability of drawing each zip code is not known ex ante and cannot be used to construct design weights. The weighting procedure corrects for the unequal sampling probabilities generated by the adaptive sampling algorithm described above.

1.1. Respondents with a weight of zero

Recruitment batches 2 and 3 targeted the population of Native Americans. Even though non-Native Americans contacted within these two batches were not eligible to become panel members, some were accidentally invited to join the UAS. Because we are unable to attach a probability to this happening, these panel members receive a weight of zero.

Recruitment batch 4 was a simple random sample from a list of women who had given birth in Los Angeles County between 2009 and 2012 in zip codes around restaurants participating in a healthy
menu options project. Because of the highly specific nature of this subsample, we do not provide weights for members recruited within this batch and assign to all of them a weight of zero.

Thus, we provide weights for respondents in all batches listed in Table 1, except for non-Native American households in batches 2 and 3 and all households in batch 4.

2. WEIGHTING

In the UAS, sample weights are survey-specific. They are provided with each UAS survey and, unless otherwise indicated, are meant to make each survey data set representative of the U.S. population with respect to a pre-defined set of socio-demographic variables. Sample weights are constructed in two steps. In a first step, a base weight is created to account for unequal probabilities of sampling UAS members generated by the adaptive sampling algorithm. In a second step, final post-stratification weights are generated to correct for differential non-response rates and to bring the final survey sample in line with the reference population as far as the distribution of key variables of interest is concerned.

2.1. Step 1: Base Weights

When computing base weights, the unit of analysis is a zip code. We estimate a logit model for the probability that a zip code is sampled as a function of its characteristics such as Census region, urbanicity, population size, as well as sex, race, age, marital status and education composition. Estimation is carried out on an American Community Survey (ACS) file that contains 5-year average characteristics at the zip code level.\(^2\) The outcome of this logit model is an estimate of the marginal probability of a zip code being sampled, which, given the implementation of the adaptive sampling algorithm described above, is not known ex ante.

We indicate by \(\pi_k\) the logit estimated probability of sampling zip code \(k\). The probability of sampling household \(h\) after drawing zip code \(k\) is the ratio of the number of households sampled

\(^2\) Strictly speaking, all files from the U.S. Census Bureau use “zip code tabulation area” (zcta), which is based on, but not identical to, USPS’s definition of zip codes. We ignore the distinction between the two.
divided by the number of households in the zip code. We indicate this by π_{hk}. Hence, the marginal probability that household h from zip code k is sampled is $\pi_{hk} = \pi_{h|k} \times \pi_k$.

The base weight is a zip code level weight defined as:

$$w_{hk}^{base} = \Lambda \times \frac{1}{\pi_{hk}}$$

where the constant Λ is chosen such that the sum of the base weights is equal to the number of sampled households. A comprehensive discussion of how base weights are computed is available here.

UAS members are assigned a base weight, computed as described above, depending on the zip code where they reside at the time of recruitment.

2.2. Step 2: Poststratification Weights

The execution of the sampling process for a survey is typically less than perfect. Even if the sample of panel members invited to take a survey is representative of the population along a series of dimensions, the sample of actual respondents may exhibit discrepancies because of differences in response rates across groups and/or other issues related to the fielding time and content of the survey. A second layer of weighting is therefore needed to align the final survey sample to the reference population as far as the distribution of key variables is concerned.

In this second step, we perform raking weighting (also known as iterative marginal weighting), starting from the base weights, w_{hk}^{base}, described in the previous section. With this, we assign poststratification weights to survey respondents such that the weighted distributions of specific socio-demographic variables in the survey sample match their population counterparts (benchmark or target distributions).

The benchmark distributions against which UAS surveys are weighted are derived from the Current Population Survey (CPS) Annual Social and Economic Supplement (ASEC) administered in March of each year. We use the latest available CPS-ASEC at the time a survey is completed.

Since the CPS-ASEC becomes available at the end of each year, typically there exists a mismatch of one year between the year of survey completion and the year of the CPS-ASEC used to derive...
benchmark distributions. We provide updated weights based on the same CPS-ASEC year as the one of survey completion to users on request.

Unless otherwise required by the aims of the survey and specified in the sample selection process, the reference population for UAS surveys is the U.S. population of adults, age 18 or older, excluding institutionalized individuals and military personnel.

2.3. Categorization and Imputation of Variables

For post-stratification weighting purposes, we use demographic information taken from the most recent *My Household* survey, which is answered by all active UAS members every quarter. All socio-demographic variables in the *My Household* survey are categorical, but some, such as age, education, and income, take values in a relatively large set. We recode all socio-demographic variables considered for poststratification into new categorical variables with no more than 5 categories. The aim of limiting the number of categories is to prevent these variables from forming strata containing a very small fraction of the sample (less than 5%), which may cause sample weights to exhibit considerable variability.

The list of all recoded categorical variables considered for poststratification is reported in Table 2.

<table>
<thead>
<tr>
<th>Recoded Variable</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>1. Male; 2. Female</td>
</tr>
<tr>
<td>Age</td>
<td>1. 18-39; 2. 40-49; 3. 50-59; 4. 60+</td>
</tr>
<tr>
<td>Born in the US</td>
<td>0. No; 1. Yes</td>
</tr>
<tr>
<td>US citizen</td>
<td>0. No; 1. Yes</td>
</tr>
<tr>
<td>Education</td>
<td>1. High School or Less; 2. Some College; 3. Bachelor or More</td>
</tr>
<tr>
<td>Native American</td>
<td>0. No; 1. Yes</td>
</tr>
<tr>
<td>Urbanicity†</td>
<td>1. Rural; 2. Mixed; 3. Urban</td>
</tr>
</tbody>
</table>
Work status
1. Working; 2. Unemployed; 3. Retired; 4. On leave, Disabled, Other

Household composition
1. 1 Member; 2. 2 Members; 3. 3 or 4 Members; 4. 5 or More Members

Household income
1. <$30,000; 2. $30,000-$59,999; 3. $60,000-$99,999; 4. $100,000+

* Census region and urbanicity are obtained from the respondent’s zip code of residence.

Before implementing the poststratification weighting procedure, we employ the following imputation scheme to replace missing values of recoded socio-demographic variables.

- Gender is obtained from administrative records.
- When age is missing, the age range available in the My Household survey is used to impute age categories. If the age range is also missing, age categories are imputed using gender-specific sample mode.
- Once age categories have been imputed (if missing), the variable with the fewest missing values is the first one to be imputed by means of a regression featuring gender and the age categories as regressors. This newly imputed variable is then added to the set of regressors to impute the variable with the second smallest number of missing values. The procedure continues in this fashion until the variable with the most missing values is imputed using information on all other available socio-demographic variables.

For binary indicators, such as born in the US and US citizen, missing values are imputed using a logistic regression. For ordered categorical variables, such as education, household composition, and household income, missing values are imputed using an ordered logistic regression. For unordered categorical variables, such as marital status, race-ethnicity, and work status, missing values are imputed using a multinomial logistic regression. Census region and urbanicity are never missing, as they are obtained from respondents’ zip codes of residence.

Each UAS survey data set including sample weights also contains a binary variable (imputation flag) indicating whether any of the recoded socio-economic variables used for poststratification has been imputed or taken from administrative data not available to data users. As of October 2019, this variable takes value 1 for 0.13% of UAS members.
2.4. Raking/Trimming Algorithm

We adopt a raking algorithm to generate poststratification weights. This procedure involves the comparison of target population relative frequencies and actually achieved sample relative frequencies on a number of socio-demographic variables independently and sequentially. More precisely, starting from the base weights, at each iteration of the algorithm weights are proportionally adjusted so that the distance between survey and population marginal distributions of each selected socio-demographic variable (or raking factor) decreases. The algorithm stops when survey and population distributions are perfectly aligned. A maximum of 50 iterations is allowed for perfect alignment of survey and population distributions to be achieved. If the process does not converge within 50 iterations, no sample weights are returned and attempts using different raking factors are made.

Our raking algorithm trims extreme weights in order to limit variability and improve efficiency of estimators. We follow the general weight trimming and redistribution procedure described by Valliant, Dever and Kreuter (2013).³

Specifically, we define \(N = N_w + N_{nw} \) the total sample size, where \(N_w \) is the number of respondents who receive a weight, and \(N_{nw} \) is the number of respondents with a pre-assigned weight of zero (non-Native Americans in batches 2 and 3; all respondents in batch 4). Indicating with \(w_{i}^{rak} \) the raking weight for respondent \(i = 1, ..., N_w \), and with \(\overline{w}^{rak} = \frac{1}{N_w} \sum_{i=1}^{N_w} w_{i}^{rak} \) the sample average of raked weights,

I. We set the lower and upper bounds on weights equal to \(L = 0.25 \overline{w}^{rak} \) and \(U = 4 \overline{w}^{rak} \), respectively. While these values are arbitrary, they are in line with those described in the literature and followed by other surveys (Battaglia et al., 2009).⁴

II. We reset any weights smaller than the lower bound to L and any weights greater than the upper bound to U:

$$w_i^{trim} = \begin{cases}
L & w_i^{rak} \leq L \\
L \leq w_i^{rak} < U \\
U & w_i^{rak} \geq U
\end{cases}$$

III. We compute the amount of weight lost by trimming as $w^{lost} = \sum_{c=1}^{N_c} (w_i^{rak} - w_i^{trim})$ and distribute it evenly among the respondents whose weights are not trimmed.

While raking weights can match population distributions of selected variables, trimmed weights typically do not. We therefore iterate the raking algorithm and the trimming procedure until post-stratification weights are obtained that respect the weight bounds and align sample and population distributions of selected variables. This procedure stops after 50 iterations if an exact alignment respecting the weight bounds cannot be achieved. In this case, the trimmed weights will ensure the exact match between survey and population relative frequencies, but may take values outside the interval defined by the pre-specified lower and upper bounds.

2.5. Final Poststratification Weights

Indicate by w_i^{post} the final poststratification weight for respondent i, obtained by applying the raking algorithm to the base weights and after iterating the raking/trimming procedure as described above. Each weighted UAS survey data set includes final poststratification weights relative to their sample mean. Formally, this is

$$w_i^{final} = \frac{w_i^{post}}{\left(\frac{1}{N_w} \sum_{j=1}^{N_w} w_j^{post}\right)}$$

For the N_w respondents who receive a weight, and $w_i^{final} = 0$ for the N_{nw} respondents who do not. Hence, relative final poststratification weights sum to the size of the sample of respondents who receive a weight (N_w) and average to 1 within that sample.
Default Weights

By default, poststratification weights for all UAS surveys are generated using the following set of raking factors (as defined in Table 2):

- **Gender**
- **Race-ethnicity**
- **Age**
- **Education**
- **Census region**
- **Native American** (only if for surveys including respondents from batches 2 and 3)

We have carried out extensive testing and concluded that raking weights produced by this combination of factors perform well across different dimensions. In particular, they exhibit moderate variability, thereby leading to better precision of weighted estimates, and allow matching the distributions of variables not used as raking factors in a satisfactory manner, thereby improving overall representativeness. Our Monte Carlo studies have shown that these desirable properties are robust to sample sizes ranging from 500 to 2,000 respondents, an interval that includes most of the UAS surveys.

For UAS surveys currently in the field, default weights can be obtained by sending a request to uas-weights-1@mymaillists.usc.edu.

For completed surveys, the data set with default weights is available for download on the UAS webpage.
Custom Weights

Data users can customize the weighting procedure and obtain weights that better suit the goals of their research and data analysis. Custom weights can be obtained by choosing which socio-demographic variables should be used by the raking algorithm to generate post-stratification weights. Raking can be performed on one-way marginals, by matching population distributions of single socio-demographic variables, such as gender or education, as well as on two-way marginals, by matching the distributions of interaction variables, such as gender × education. The preferred set of raking factors may feature both single and interaction variables, such as, for instance, race-ethnicity and gender × education. The use of two-way marginals corrects for discrepancies between distributions referring to specific subgroups that would not be accounted for by using one-way marginals alone.

Custom weights requests should be sent to uas-weights-l@mymaillists.usc.edu, alongside with the preferred set of raking factors. This set is limited to the variables listed in Table 2 and to a maximum of 6 variables. (single variables, interaction variables or a combination of both). Restrictions on the number and type of raking factors are imposed to ensure convergence of the algorithm and to reduce weight variability.

Weighting Output

Each weighted UAS survey data set includes the following variables:

- **base_weight**

 Base weights correcting for unequal sampling probabilities.

- **imputation_flag**

 A binary variable indicating whether any of the variables used for poststratification has been imputed.

- **cps_year**
A variable indicating the CPS-ASEC year used to obtain benchmark distributions for poststratification.

- **final_weight**

Relative final poststratification weights ensuring representativeness of the survey sample with respect to key pre-selected demographic variables.